Phototransduction in Retinal Ganglion Cells

نویسنده

  • Peter B. Detwiler
چکیده

The mammalian retina contains a small number of retinal ganglion cells that express melanopsin, a retinal based visual pigment, and generate a depolarizing response to light in the absence of rod and cone driven synaptic input; hence they are referred to as intrinsically photosensitive retinal ganglion cells (ipRGCs). They have been shown to be comprised of a number of sub-types and to provide luminance information that participates primarily in a variety of non-imaging forming visual functions. Here I review what is currently known about the cascade of events that couple the photoisomerization of melanopsin to the opening of a non-selective cation channel. While these events conform in a general sense to the prevailing model for invertebrate phototransduction, in which visual pigment signals through a G protein of the Gq class and a phospholipase C cascade to open a TRPC type ion channel, none of the molecular elements in the melanopsin transduction process have been unequivocally identified. This has given rise to the possibility that the underlying mechanism responsible for intrinsic photosensitivity is not same in all ipRGC sub-types and to the recognition that signal transduction in ipRGCs is more complex than originally thought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.

Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. H...

متن کامل

Phototransduction by retinal ganglion cells that set the circadian clock.

Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion ce...

متن کامل

Stem ‍Cells in Glaucoma Management

Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...

متن کامل

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

Melanopsin: an exciting photopigment.

The discovery that mice lacking rods and cones are capable of regulating their circadian rhythms by light provided the conceptual framework for the discovery of an entirely new photoreceptor system within the mammalian eye. We now know that a small subset of retinal ganglion cells are directly photosensitive and utilize an opsin/vitamin A-based photopigment called melanopsin maximally sensitive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2018